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Transport processes in periodic porous media 
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The Stokes equation system and Ohm’s law were solved numerically for fluid in 
periodic bicontinuous porous media of simple cubic (SC), body-centred cubic (BCC) 
and face-centred cubic (FCC) symmetry. The Stokes equation system was also solved 
for fluid in porous media of SC arrays of disjoint spheres. The equations were solved 
by Galerkin’s method with finite element basis functions and with elliptic grid 
generation. The Darcy permeability k computed for flow through SC arrays of spheres 
is in excellent agreement with predictions made by other authors. Prominent 
recirculation patterns are found for Stokes flow in bicontinuous porous media. The 
results of the analysis of Stokes flow and Ohmic conduction through bicontinuous 
porous media were used to test the permeability scaling law proposed by Johnson, 
Koplik & Schwartz (1986), which introduces a length parameter A to relate Darcy 
permeability k and the formation factor F. As reported in our earlier work on the SC 
bicontinuous porous media, the scaling law holds approximately for the BCC and FCC 
families except when the porespace becomes nearly spherical pores connected by small 
orifice-like passages. We also found that, except when the porespace was connected by 
the small orifice-like passages, the permeability versus porosity curve of the 
bicontinuous media agrees very well with that of arrays of disjoint and fused spheres 
of the same crystallographic symmetry. 

1. Introduction 
Flow through bundles of tubes (von Brackel 1975), cubic arrays of disjoint spheres 

(Hasimoto 1959; Serrenson & Stewart 1974; Sangani & Acrivos 1982; Zick & Homsy 
1982) and cubic arrays of interpenetrating spheres (Larson & Higdon 1988) has been 
analysed extensively in order to understand flow though porous media. The poresolid 
surfaces in a bundle of tubes lack interconnected porespace and Gaussian curvature. 
Interpenetrating spheres have Gaussian curvature singularities along the seams 
between spheres. Natural porous media, on the other hand, frequently have porespace 
in which the curvature of the surfaces has become continuously distributed through 
such processes as sintering, cementation or diagenesis. It is thus of interest to examine 
flow in families of porous media in which the curvature distribution is continuous and 
to compare the results with flow in disjoint and interpenetrating arrays of spheres. In 
this paper we report such a study. 

The model porous media we examine are periodic, bicontinuous (continuously 
connected porespace and continuously connected solid matrix), have pore surfaces 
with uniform mean curvature, and have simple cubic (SC), body-centred cubic (BCC) 
or face-centred cubic (FCC) symmetry. For a given symmetry, a family of porous 
media of varying porosity is generated by varying the mean curvature. These three 
symmetry classes are among the families of triply periodic bicontinuous structures with 
uniform interface mean curvature that were computed by Anderson et al. (1990). 
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In what follows we report numerical solutions of the Stokes equations for steady 
flow and Ohm’s law for steady conduction of a fluid in the bicontinuous porous media. 
The permeability k and the effective conductivity a are also presented. In a previous 
study (Saeger, Scriven & Davis 1991) of the SC family, we tested Johnson, Koplik & 
Schwartz’s (1 986) conjectured scaling law that 

with qf the conductivity of the bulk fluid and A a length parameter defined by 

A = 2 (V$)z dV/ (V$), dS, (2) s, s, 
where 1c. is the electric potential in the porespace during steady conduction, and S is the 
surface and V the volume of the porespace. The validity and limitations of (1) are 
explored further in a subsequent section. 

Pore segments represented by hyperboloids of revolution (Rajagopalan & Tien 1976) 
are used in the analysis of transport through periodic bicontinuous porous media in the 
curvature range where porespace consists of almost spherical pore bodies connected by 
tiny sharply converging-diverging necks. 

2. Interfaces of prescribed mean curvature 
Unit cells of members of the SC, BCC and FCC families are shown in figures 1-3 

for various mean curvatures H, where H = [1/R, + l/R2]/2. R, and R, are the principal 
radii of curvature and are taken to be positive for curvature into the solid. The 
curvature is given herein in units of 1 / a ,  where a is the half-length of the edge of a unit 
cell. Also, the porosity @ of the porespace is plotted as a function of curvature in 
figures 1-3. The coordinates of the pore surfaces were computed by Anderson et al. 
(1990) for these families. In the SC family (see figure 1) at zero mean curvature the 
porespace and solid matrix are each identical sample-spanning labyrinths and the 
interface between them is Schwarz’s periodic minimal surface (Schwarz 1890). The 
positive curvature branch of the family of constant mean curvature interfaces loops 
through a turning point and then terminates at H =  1, where the continuous solid 
matrix becomes a SC packing of spheres making point contacts - a SC bead pack. The 
negative curvature branch loops through a complementary turning point and 
terminates at H = - 1, where the continuous porespace becomes a SC packing of 
bubbles making point contacts - a SC inclusion array, or a bubble pack. Just short of 
that the porespace consists of almost spherical pore bodies connected by tiny sharply 
converging-diverging necks. The dashed curves indicate interfaces of prescribed mean 
curvature H for which the solid matrix and porespace are no longer both continuous. 
The dashed curve on the right terminates at the SC bead pack limit ( H  = 1, @ = 
1 -n/6 z 0.476). At mean curvature H > 1 along the dashed curve the porespace is 
the space between SC arrays of disjoint solid spheres. The dashed curve on the left 
terminates at the SC bubble pack limit ( H  = - 1, @ = n/6 z 0.524). At mean 
curvature H < - 1 along the dashed curve the porespace is an SC array of isolated 
spherical bubbles in a continuous solid matrix. 

In the BCC family (see figure 2), the zero mean curvature interface defines a 
porespace of porosity Q, = 0.464. The BCC bead pack limit is at H = 2/2/3, 
Q, = 1 -.n2/3/8 z 0.320 and the dashed curve on the right is the solution branch where 
the porespace is that between a BCC array of solid spheres. At the bubble pack limit 
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FIGURE 1. Solid-porespace interfacial mean curvature H us. porosity @ of simple dubic (SC) porous 
media. Unit cells of bicontinuous media: H = -0.8987, @ = 0.25 (left), H = 0, @ = 0.5 (centre), 
H = 0.8987, @ = 0.75 (right). 
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FIGURE 2. Solid-porespace interfacial mean curvature H us. porosity @ of body-centred cubic (BCC) 
porous media. Units cells of bicontinuous media: H = -2.26, @ = 0.143 (left), H = 0, @ = 0.464 
(centre), H = 0.97, @ = 0.643 (right). 
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FIGURE 3. Solid-porespace interfacial mean curvature H us. porosity @ of face-centred cubic (FCC) 
porous media. Unit cells of bicontinuous media: H = -0.89, @ = 0.363 (left), H = 0, @ = 0.468 
(centre), H = 0.95, @ = 0.561 (right). 

( H  = -2, @ = n/8 z 0.393), and at the solution branch where the porespace consists 
of isolated spherical bubbles ( H  < 2), the bubbles are in a four-coordinated 'wrapped 
package' array (Schoen 1970). 

In the FCC family (see figure 3), the positive curvature terminus of the bicontinuous 
solution branch is the FCC bead pack limit ( H  = 2/2, @ = 1 -n2/2/6 z 0.260). 
Beyond this curvature the porespace is that between a FCC array of solid spheres. Self- 
intersecting interface surfaces occur on the negative curvature solution branch. They 
start at H x - 1.23, @ z 0.66, and they continue to occur up to the terminus of the 
negative curvature solution branch at H = - 1.16, @ = 1.36, where the porespace 
consists of self-intersecting spheres. In the analysis by Anderson et al. (1990) a fraction 
of the porespace is double-counted when interface surfaces overlap. Porosity @ is 
therefore artificially high, and even exceeds unity in some cases. Transport in porous 
media with self-intersecting interface surfaces was not analysed in this work. 

3. Analysis of Stokes flow 
Creeping flow within the fluid-filled porespace is that of a single-phase Newtonian 

Auid of viscosity p. The field velocity u and pressure p were obtained by solving the 
Stokes flow equation system pV2u-Vp = 0, V-u = 0 on the unit cell. Uniform 
pressures were imposed on the opposed inflow face and outflow face. Appropriate 
symmetry conditions were imposed on all six faces, and the no-slip and no-penetration 
boundary condition u = 0 was applied at the interface between fluid and solid. Given 
the symmetries of the system, the solution was computed only on a Stokes flow 
primitive cell, which was one-sixteenth of the unit cell. The Stokes system was solved 
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within the Stokes flow primitive cell by Galerkin’s method with finite element basis 
functions (Strang & Fix 1973). The velocity u and pressure p were expanded in 
triquadratic basis functions 4’ and trilinear basis functions Y’ respectively : the 
numerical details of computations are given elsewhere (Saeger 1991 ; Saeger, Davis & 
Scriven 1990). 

Once the velocity and pressure fields were obtained, the Darcy permeability k was 
computed from Darcy’s law (Darcy 1856). For the isotropic porous media shown in 
figures 1-3, this law is p U  = -kAp/2a, where p is the fluid viscosity, and Ap is the 
pressure difference between the outflow and inflow faces of the unit cell, and the 
superficial velocity U is the velocity at either the inflow or outflow face. 

4. Analysis of Ohmic conduction 
The steady-state distribution of potential 21. within a porespace filled with static fluid 

was obtained by solving the Ohmic conduction boundary value problem, i.e the 
Laplace equation Vz$ = 0, on the unit cell with uniform potentials $i, and 9, imposed 
on the opposed influx face and outflux face, and vanishing current flux required on all 
four lateral faces as well as at the interface between conductive fluid and non- 
conductive solid. The potential $that satisfies the Laplace equation within the unit cell 
has the same sixteen-fold symmetry as the Stokes flow velocity and pressure fields. 
Thus the primitive cells for Stokes flow and Ohmic conduction are identical. 

As was done for the Stokes system, the Laplace equation was solved within its 
primitive cell by Galerkin’s method with finite element basis functions. The potential 
~ was expanded in the same triquadratic basis functions q5i used for velocity. The 
porespace was divided into the same finite elements previously used to analyse the 
Stokes system. For numerical details see Saeger (1991) or Saeger et al. (1990). 

Once the potential distribution within the Ohmic conduction primitive cell was 
found, the conductivity ratio, v/af = 1/F = (~n.V$ddS>/a($i-$,), was evaluated 
over the influx or outflux face of the unit cell. F is the so-called formation factor. The 
length parameter A was evaluated from (2). 

5. Flow and conduction in hyperboloid pore segments 
In the Galerkin/finite element analysis of conduction and flow in periodic 

bicontinuous porous media, the cost of adequate numbers of basis functions to 
represent conduction and flow with adequate accuracy prevented us from examining 
the details of flow and transport of the SC and BCC near the bubble pack limits (see 
figures 1 and 2) where the narrowing necks between nearly spherical pore bodies 
become the chief resistance to flow and conduction. In our earlier work (Saeger et al. 
1991) we introduced an approximation in which we simply neglect resistances to flow 
and conduction in the pore bodies, and fit pore necks by the method of least squares 
to sharply converging-diverging hyperboloids of revolution. As seen in figure 4 the fit 
is quite good when the necks are small. 

The total pressure drop Ap across a converging-diverging pore segment (Happel & 
Brenner 1983) is 

where q is the volumetric flow rate through the pore segment, R is the minimum pore 
throat radius, and 0 c 6’< n/2 is the angle of the asymptote of the generating 
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FIGURE 4. Pore segments defined by triply periodic surfaces of constant mean curvature Hand simple 
cubic symmetry (-), and their least-squares fit to hyperboloids of revolution (- . . . -): (a) mean 
curvature H = -0.8987, porosity @ = 0.25; (b) H = - 1.0750, @ = 0.375; (c)  H = - 1.05, @ = 0.475. 

hyperbola. A unit cell of the SC porous medium (see figure 1) contains one 
converging-diverging pore segment, and q = 4 d U .  BCC media (see figure 2) contain 
two converging-diverging pore segments per unit cell, but half the total pressure drop 
across the unit cell is seen by each one. Thus the Darcy permeability k of a single 
hyperboloid pore segment is 

~ 3 ( 1 +  2 cos 0) (1 -cos 0 ) 2  

6a sin3 0 
k = -  (4) 

The solution of Laplace's equation with non-conducting pore walls, and fixed 
potentials $t, $o at the influx and outflux sections is (Moon & Spencer 1961) 

~ = +(@i + $J +:($i - $J tan-' (sinh 0, ( 5 )  
where f +  00 is the influx section, 6- - co is the outflux section, and the coordinate 
surface 6 = 0 is a circular disk that bisects the pore segment at its throat. The total 
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FIGURE 5. Permeability rates M versus asymptotic angle 0 < 6' < n/2 of hyper-boloid pore 
segments, equation (8). As 6'+0, M + 8 / n 2  z 0.8106. As 6'+n/2, M x  (4/3n2)[lncos6']2+~. 

current flux can be evaluated at this throat, and the formation factor F of a single pore 
segment is 

a sin 8 
F =  

R(l - cos~) '  

The length parameter A from (1) is then 

1 - cos 0 
A =  (7) 

Thus for a single pore segment the permeability ratio A4 defined in (1) depends only on 
the angle 8: 

4 ('" [( 1 + sin e)/cos 6'1 
sin 8 

M = 8[F][k][A]-2 = (1 + 2 cos 6') (1 + cos 8) 

The ratio M is plotted versus 6' in figure 5. This figure shows that the conjecture of 
Johnson et al. (1986) will fail for porespace connected by small orifices, although for 
0 < 8 < 80" the quantity M lies between 0.8 and 1.5. 

6.  Results 
6.1. Permeability of SC arrays of spheres 

The Darcy permeability k obtained from the Galerkin/finite element analysis of the 
Stokes equation system in SC arrays of spheres is shown in figure 6. These results are 
also reported as the Stokes drag coefficient C, = 4 / 6 n p r U ,  where the sphere radius 
Y = 1/H, and I$ is the drag force on the sphere. The drag coefficient and permeability 
are simply related to each other, namely, k = ( 2 ~ ) ~ / ( 6 x r C , ) ,  where (2~7)~ is the volume 
of the unit cell. The inlet and outlet mass flow rates through the Stokes-flow primitive 
cell computed by the Galerkin/finite element method agreed to eight decimal places. 
The pressure force applied across the primitive cell, and the traction force jn- T d S  at 
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Porosity, @ 

FIGURE 6. Curves show literature values (Zick & Homsy 1982; Sangani & Acrivos 1982; Larson & 
Higdon 1988) compared with our Galerkin/finite element predictions (solid circles) of the Stokes drag 
coefficient C, and Darcy permeability k/a2 of SC arrays of spheres. 

c.f. 

sc 
sc 
sc 
sc 
sc 
sc 
sc 
sc 
BCC 
BCC 
BCC 
BCC 
BCC 
BCC 
BCC 
BCC 

FCC 
FCC 
FCC 
FCC 
FCC 
FCC 
FCC 
FCC 

H 

- 1,0625 
-0.8987 
-0.3115 

0.0000 
0.3115 
0.8987 
1.0750 
1.0375 

-2.2600 
- 1.1300 

0.0000 
0.3625 
0.9700 
1.3800 
1.4000 
1.3800 

- 1,1790 
-0.8900 
- 0.4450 

0.0000 
0.4750 
0.9500 
1.2640 
1.4600 

@ k/a2  F 

0.312 2.67 x 3.20 x 10' 
0.250 4.05 x 1.34 x 10' 
0.375 5.23 x 4.67 x 10" 
0.500 1.35 x 3.00 x 10" 
0.625 2.82 x 2.12 x loo 
0.750 5.62 x 1.56 x loo 
0.625 2.61 x 1.96 x loo 
0.515 1.28 x 2.56 x loo 

0.143 3 . 9 4 ~  3.11 x lo1 
0.218 7.54 x 9.24 x loo 
0.463 6.02 x 3.22 x loo 
0.560 1.05 x 2.43 x 10' 
0.643 1.62 x 1.91 x 10" 
0.560 9.51 x 2.24 x 10" 
0.530 7.57 x 2.36 x 10" 
0.460 4.57 x 2.79 x 10" 

0.468 1.6 x lo-* 9.8 x loo 
0.363 5.6 x 6.5 x loo 
0.406 1.3 x 4.6 x loo 
0.468 2.4 x 3.4 x loo 
0.531 3.9 x 2.7 x loo 
0.561 4.9 x 2.4 x 10" 
0.531 4.1 x 2.4 x loo 
0.374 1.2 x 3.8 x 10" 

c.f. = crystallographic family. 

l a  M 

8.25 x lo-' 1.00 
2.13 x lo-' 0.955 
4.40 x lo-' 1.01 
5.67 x lo-' 1.01 
7.07 x lo-' 0.960 
9.40 x lo-' 0.792 
6.45 x lo-' 0.983 
4 . 1 0 ~  lo-' 1.56 

9.84 x lo-* 1.01 
2.34 x lo-' 1.01 
3.88 x lo-' 1.03 
4.54 x lo-' 0.989 
5.39 x lo-' 0.855 
4.40 x lo-' 0.880 
4.18 x lo-' 0.819 
3.31 x 10-1 0.930 

1.1 x lo-' 1.1 
1 . 6 ~  10-1 1.1 
2.1 x 10-1 1.1 
2 . 5 ~  lo-' 1.0 
2.9 x lo-' 0.98 
3.2 x lo-' 0.91 
3.0 x lo-' 0.86 
1 . 8 ~  lo-' 1.0 

TABLE 1. Predictions of viscous flow and charge transport properties of bicontinuous porous media, 
calculated by means of Galerkin's method and finite element basis functions (sufficient in number that 
all reported digits are significant). 
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FIGURE 7. Darcy permeability k / d 2  and mean curvature us. porosity @. Galerkin/finite element results 
for bicontinuous porous media (0)  are compared with results for arrays of discrete, contacting and 
overlapping spheres (dashed curves, Larson & Higdon 1988), and with predictions of the hyperboloid 
model (solid curves in the permeability plots). (a)  SC ( d =  2 4  (b) BCC ( d =  a2/3), (c) FCC 
(d  = 4 2 ) .  

the spherical solid-porespace interface were compared. These values agreed to within 
0.02 YO at the SC bead pack (close-packed) limit ( H  = 1, @ = 1 -n/6 x 0.4764), and to 
within 1.8 % at the highest porosity analysed ( H  = 8.060, @ = 0.9990). 

As indicated by figure 6, the Galerkin/finite element results show excellent 
agreement with literature values. At H = 8.060, @ = 0.9990, the drag coefficient C,, 
differed from the value obtained from the boundary-element analysis of Zick & Homsy 
(1982) by 2.3%. Otherwise these two sets of values differed by less than 0.35%. As 
porosity @+ 1 ,  velocity gradients in the vicinity of the sphere’s surface become large. 
The Galerkin/finite element method required more basis functions than were 
affordable to accurately resolve these gradients. Thus disagreement with literature 
values and errors in the total force balance were larger at this limit than at the bead 
pack limit. Fortunately, as @+ 1, the analysis of the Stokes equation system by 
Hasimoto (1959) becomes more accurate and is cheaper so that the effort required to 
perform Galerkin/finite element computations becomes unnecessary. 

6.2. Permeability of bicontinuous porous media 
The Darcy permeability k of SC, BCC and FCC bicontinuous porous media obtained 
from the Galerkin/finite element analysis of the Stokes equation system is listed in 
table 1 ,  and is shown in the upper portion of figure 7(a-c). In these figures the units 
of permeability, d2,  are those used by Larson & Higdon (1988), i.e. d = 2a for SC, 
d = a d 3  for BCC and d = a 4 2  for FCC. The results of this work were compared with 
those of Larson & Higdon (1988), who analysed Stokes flow through discrete, 
contacting and overlapping spheres in SC, BCC and FCC arrays. For porespaces near 
the bubble pack limits of the SC and BCC families, the Galerkin/finite element results 
were compared with those of the hyperboloid pore segment model, equation (4). 

Like the Galerkin/finite element analysis of Stokes flow in SC arrays of spheres, 
mass balances across the primitive cell closed to within eight decimal places for SC, 
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FIGURE 8. Ohmic conductivity I/Fand mean curvature vs. porosity @. Galerkin/finite element results 
for bicontinuous porous media (@) are compared with the hyperboloid model (solid curves in the 
conductivity plots). (a)  SC, (h) BCC, (c) FCC. 

BCC and FCC bicontinuous media. For porespaces other than the closest approaches 
to bubble pack limits, e.g. H = - 1.0375, SP = 0.485 for SC and H = -2.5575, @ = 
0.307 for BCC, the agreement between applied pressure forces and computed traction 
forces was between 0.01 YO and 1.8 Yo. As mentioned in 95, the accuracy of affordable 
basis functions fell as the SC and BCC bubble pack limits were approached. 

For mean curvature H greater than the value at minimum porosity of each 
crystallographic family, permeability is a unique, increasing function of porosity @, as 
it is for the media used by Larson & Higdon (1988). In the SC family (see figure 7a), 
the worst agreement between the permeability values obtained for these two types of 
media is 15% (H  = 0, @ = 0.5); the best is 0.31 YO at H = 1.0375, @ = 0.515. In the 
BCC family (see figure 7b), the worst is 39 YO ( H  = - 1.13, SP = 0.218), and the best is 
0.34% ( H  = 1.38, SP = 0.46). In the FCC family (see figure 7c), the worst is 44% 
( H  = -0.89, SP = 0.363), and the best is 2.12% ( H  = 1.46, @ = 0.374). These trends 
are expected because the porespaces used in this work and those of Larson & 
Higdon (1988) are identical at the bead pack limit of each family. 

As the SC and BCC bubble pack limits were approached, permeability k fell rapidly 
to zero. In the SC family, the values obtained from the Galerkin/finite element results 
and the hyperboloid pore segment model, (4), agree to within 25 YO ( H  = -0.8987, 
@ = 0.25), and 19% (H = - 1.075, SP = 0.375). Nearer the SC bubble pack limit 
( H  = - 1.0375, SP = 0.485), where the accuracy of the Galerkin/finite element results 
is poor, the values obtained by the two methods differ by two orders of magnitude. In 
the BCC family, the two methods agree to within 27 % ( H  = -2.26, @ = 0.147) and 
183 YO ( H  = -2.5575, @ = 0.307). As the overlapping porespaces were approached 
in the FCC family, permeability fell less rapidly than in the SC and BCC families. 

6.3. Conductivity of bicontinuous porous media 
The formation factor F of SC, BCC and FCC bicontinuous porous media obtained 
from the Galerkin/finite element analysis of the Laplace equation system is listed in 
table 1, and the conductivity l / F i s  shown in the upper portion of figure 8(u-c). Influx 
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FIGURE 9. Permeability ratio M ss 8Fk/Az of bicontinuous porous media. Darcy permeability k,  
formation factor F, and the length parameter A are obtained from Galerkin/finite element analysis 
of Stokes flow and Ohmic conduction. (a) SC, (b) BCC, (c) FCC. 

and outflux electric currents in the porespace agreed typically to within 0.4 YO for SC, 
0.03% for BCC, and 0.5% for FCC media. Agreement was to within 40% for 
porespaces nearest the bubble pack limits of the SC ( H  = - 1.0375, @ = 0.485) and 
BCC ( H  = -2.5575, @ = 0.307) families. In this region of porespace, where the 
accuracy of affordable basis functions fell, Galerkin/finite element results were 
compared with those of the hyperboloid pore segment model, equation (6). 

The conductivity 1 /F  showed a dependence upon porosity @, or mean curvature H,  
like that of the Darcy permeability k. At mean curvatures greater than the value at 
minimum porosity, conductivity is a unique, increasing function of porosity @. As the 
SC and BCC bubble pack limits were approached, conductivity fell rapidly to zero. As 
the overlapping porespaces were approached in the FCC family, conductivity fell less 
rapidly than in the SC and BCC families. In the SC family, the conductivity 1/F 
obtained from the Galerkin/finite element results and the hyperboloid pore segment 
model (6), agree to within 4.0% at H = -0.8987, @ = 0.25, and 11 % at H = - 1.075, 
@ = 0.375. At H = - 1.0375, @ = 0.485, the hyperboloid value is 20 times larger than 
the Galerkin/finite element value. In the BCC family, results of these two methods 
agree to within 9.3 YO at H = -2.26, @ = 0.147, and 79 % at H = -2.5575, @ = 0.307. 

6.4. Characteristic length and permeability ratio of bicontinuous porous media 
The permeability ratio M of SC, BCC and FCC bicontinuous porous media obtained 
from Galerkin/finite element results is listed in table 1, and are plotted versus mean 
curvature H in the upper portion of figure 9(a-c). The results shown in these figures 
are those where the affordable sets of basis functions yielded accuracy in M to three 
significant figures for SC and BCC media, and two for FCC media. At zero mean 
curvature, M = 1.01 for SC, M = 1.03 for BCC and M = 1.02 for FCC media. In all 
three families there are local minima in M at the maximum porosity of the positive 
mean curvature solution branch. As the SC solid sphere limit ( H  = 1) is approached, 
the permeability ratio M climbs abruptly as the porespace loses all resemblance to 
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(4 (b) 

x = o  
z = o  

x=f 1 
z=f 1 

X=O 

z=O 

x = + l  
z=fl 

FIGURE 10. Stokes-flow streamlines at symmetry planes of bicontinuous porous media (u) SC: (i) 
H = -0.8987, @ = 0.25; (ii) H = 0, @ = 0.5; (iii) H = 0.8987, @ = 0.75. (b) BCC: (i) H = -2.26, 
@ = 0.143; (ii) H = 0, @ = 0.464; (iii) H = 0.97, @ = 0.643. (c) FCC: (i) H = -0.89, @ = 0.363; (ii) 
H = 0, @ = 0.468; (iii) H = 0.95, @ = 0.561. 

converging-diverging tubes, and the solid matrix degenerates to a bead pack. In the SC 
and BCC families there are shallow local minima in M at minimum porosity. On the 
negative curvature solution branch of all three families, as pore throats narrow, the 
permeability ratio M is approximately 1. As the disjoint bubble pack limit is 
approached the permeability and conductivity are well approximated by the 
hyperboloid pore segment model. Moreover, as the disjoint bubble pack limit is 
approached in the SC and BCC families, the angle B of the asymptote of the 
approximating hyperboloid segment approaches .n/2 and so, from (8), it follows that 
M FZ (4/3n2) [Incos 812 as 0-t n/2. Thus, as mentioned above, the scaling law of 
Johnson et al. (1986) ultimately fails. However, it is a good approximation except very 
near the disjoint bubble limit in the bicontinuous families studied here. In the SC 
family, 0 is about 80" at a curvature H = - 1.05 and porosity @ = 0.475 (see figure 4c), 
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and so the approximation begins to fail at this curvature and gets progressively worse 
as the disjoint bubble limit is approached. Porous polyurethane foams represent a class 
of practical materials well approximated by bubbles connected by orifices. Banavar & 
Johnson (1987), Banavar, Cieplak & Johnson (1988), and Kostek, Schwartz & Johnson 
(1992) have also reported cases for which the scaling law fails. 

6.5. Recirculation in bicontinuous porous media 
Streamlines, or level curves of the stream function A ,  were obtained for symmetry 
planes of the unit cell satisfying the impenetrability condition n-u = 0. This was done 
by solving the elliptic equation V2A-n. (V x u )  = 0 with appropriate boundary 
conditions for A imposed at edges of the symmetry plane. Galerkin’s method with finite 
element basis functions was used on symmetry planes of the Stokes flow primitive cell. 
Symmetry conditions were then used to reconstruct recirculation patterns on these 
planes in the unit cell. 

Streamlines on selected symmetry planes of SC, BCC and FCC bicontinuous porous 
media are shown in figure lO(a-c). The unit cells shown in figures 1-3 are the cube 
- 1 < x < 1, - 1 d y d 1, - 1 d z d 1, and velocity u is in the negative y-direction at 
the opposed inflow and outflow faces. The equations of the symmetry planes in figure 
lO(a-c) are consistent with this assignment of coordinates. Prominent Stokes flow 
recirculation are indicated by the symmetry planes x = 0, z = 0 of the SC family, 
x = + z  of the BCC family and x = 0, z = 0, x = IfI 1, z = f 1 of the FCC family. The 
multiple recirculation cells of the BCC family (see figure lob) are similar to those 
predicted for Stokes flow past sharp corners (see Moffatt 1964). The results of this 
work shed light on processes in porous media that are strongly influenced by diffusion, 
including chemical reactions and dispersion phenomena. 

7. Discussion and conclusion 
7.1. Darcy permeability of Ohmic conductivity of biocontinuous porus media 

In each of the three crystallographic families (SC, BCC and FCC) of bicontinuous 
porous media, the dependence of both Darcy permeability k and conductivity 1/F on 
porosity @, or solid-porespace mean curvature H,  shows three distinct regions of 
behaviour : 

(i) Curvature-independent region 
For interfacial mean curvature H greater than the value at minimum porosity @ on 

the negative curvature solution branch, permeability k and conductivity 1 / F  are 
unique, increasing functions of porosity @. In this range of curvatures, permeability 
values agreed well with the results of Larson & Higdon (1988), suggesting that 
transport of momentum, and possibly charge is not strongly influenced by the presence 
of seams, i.e. concentrations of curvature at the solid-porespace interface. 

(ii) Pore-throat dominated region 
As the SC and BCC bubble pack limits are approached, permeability k and 

conductivity 1/F decay rapidly to zero, and are strong functions of porosity @ or mean 
curvature H.  All three crystallographic families show examples where transport 
properties can be double-valued at a given porosity @, a result absent from theoretical 
treatment of arrayed spheres. 
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(iii) Transition region 
For SC, BCC and FCC bicontinuous media the transition between the curvature- 

independent region and the pore-throat dominated region (overlap region for FCC) is 
abrupt and occurs in the vicinity of minimum porosity @ on the negative curvature 
solution branch. 

7.2. Permeability ratio of bicontinuous porous media 

The velocity field u of the Stokes system is generally rotational (i.e. V x u + 0) whereas 
the electric field from Laplace’s equation is irrotational (i.e. V x V@ = 0). Thus, the 
general solution of the Stokes system cannot be derived from Laplace’s equation for 
current flow. Nevertheless, the conjecture of Johnson et al. (1986) that A4 = 8Fk/Az 
(A = 2j(V@)2 d V/j(V@)2 dS), is approximately unity has been shown to hold for a 
wide variety of porous media, including those studied in this paper except where the 
transport resistance resides primarily in orifice-like throats. Avelleneda & Torquato 
(1991) have derived a rigorous expression for the relationship between F, k and 
relaxation times for transport in porous media from which A4 = 1 can be recovered as 
a special approximation. Further investigation along the lines of their work might 
enable one to anticipate cases in which F, k and A scale such that M deviates strongly 
from unity. 

This research was supported by the Minnesota Supercomputer Institute, Cray 
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